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1 Introduction

The stable interest in conformal mechanics [1–9] and its various superconformal exten-

sions [4–7, 9–22] is caused by two closely connected reasons. First, these models describe

(super)particles moving in near-horizon (AdS) geometries of black-hole solutions of su-

pergravities in diverse dimensions and so bear an intimate relation to the AdS/CFT cor-

respondence. Second, they are one-particle prototypes of many-particle d=1 integrable

(super)conformal systems of the Calogero type, which are the object of numerous studies.

The search for new models of this kind and their implications in the areas just mentioned

present interesting venues for study.

It has been proposed in [4] that the radial motion of a massive charged particle near

the horizon of an extremal Reissner-Nordström (RN) black hole is described by conformal

mechanics [1]. The target variable of this conformal mechanics is the AdS2 radial coordi-

nate as part of the AdS2×S2 background. The latter is the bosonic body of the maximally

supersymmetric near-horizon extremal RN (Reissner-Nordström) solution of N=2 D=4 su-

pergravity [4, 23], with the full isometry supergroup SU(1, 1|2). Based on this observation,

it was suggested in [4] that the SU(1, 1|2) N=4 superconformal mechanics describes the

full dynamics of a superparticle in the near-horizon geometry of extremal RN black holes.
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SU(1, 1|2) superconformal mechanics was constructed and investigated more than twen-

ty years ago in [12] in the framework of the nonlinear realizations approach. In [13], some

of the results of [12] were rediscovered and transported into the modern black-hole and

AdS/CFT context. In [5], it was then argued that an n-particle generalization of the

SU(1, 1|2) superconformal mechanics, in the form of a superconformal Calogero model, in

the large-n limit provides a microscopic description of multiple extremal RN black holes

in the near-horizon limit. Further evidence in favor of the proposal of [4] was adduced

in [9, 15], where a canonical transformation was found to link the radial motion of a

(super)particle on AdS2 × S2 as bosonic background with N=0, N=2 [9] and N=4 [15]

superconformal mechanics.

There are good reasons to look beyond SU(1, 1|2) to the most general N=4 super-

conformal group in one dimension, which is the exceptional one-parameter supergroup

D(2, 1;α) [24]. It reduces to SU(1, 1|2)⊂×SU(2) at α=0 and α= − 1. In fact, the isometry

supergroup of a near-horizon M -brane solution of D=11 supergravity was determined as

D(2, 1;α)×D(2, 1;α) [25], and D(2, 1;α) is physically realized for any value of the param-

eter α in the near-horizon M -theory solutions [26].

The general one-dimensional sigma model with D(2, 1;α) supersymmetry, in terms of

N=1 superfields, was applied in [7] to the non-relativistic spinning particle propagating in

a curved background augmented with a magnetic field and a scalar potential. D(2, 1;α) su-

perconformal mechanics was also constructed in [16] in the nonlinear realizations superfield

framework. Described by the (3,4,1) off-shell N=4 supermultiplet, this model contains in

its bosonic sector three fields, which stand for the dilaton and for the coordinates of the

coset S2 ≃ SU(2)/U(1), thus governing a particle moving on AdS2×S2. Furthermore, with

the help of a special canonical transformation, a recent paper [20] established a connection

between the model of [16] with D(2, 1;−1) ≃ SU(1, 1|2)⊂×SU(2) invariance and a particle

propagating near the horizon of extremal RN black hole with magnetic charge.

In the present paper we construct and examine a new type of N=4 superconformal

mechanics model, which is invariant under the supergroup D(2, 1;−1
2 ) ≃ OSp(4|2) . We

note that OSp(4|2) is distinguished among all N=4 supergroupsD(2, 1;α) because its coset

superspace OSp(4|2)/[SO(1, 1) × SO(2) × SU(2)] is the only superextension of AdS2 × S2

which admits a superconformally flat supervielbein and superconnections, as opposed to

the more conventional coset superspace SU(1, 1|2)/[SO(1, 1) × SO(2)] [27].

Our new OSp(4|2) mechanics arises as the n=1 case of an N=4 supersymmetric gen-

eralization of the An−1 Calogero system proposed recently in [28], and it radically differs

from the model of [16]. For one, our model is defined by a reducible D(2, 1;−1
2 ) represen-

tation, namely it is a coupled system of one (1,4,3) multiplet and one (4,4,0) multiplet,

both presented by appropriate bosonic superfields. In the action, the (4,4,0) multiplet is

described by a pure superfield Wess-Zumino term, without standard kinetic term. Further-

more, our model posesses a gauged U(1) symmetry, ensured by a non-propagating gauge

multiplet. After fixing this U(1) in a manifestly N=4 supersymmetric way, the (4,4,0)

Wess-Zumino multiplet turns into a (3,4,1) multiplet, which superconformally couples to

the (1,4,3) superfield. Alternatively, a Wess-Zumino gauge choice may be more suitable

for analyzing the component structure and for its quantization.
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In the next two sections we give a general description of the model, first in superfields

and then in component fields. Quantization is performed in section 4. We employ the

harmonic framework of [17, 29]. Thus, from the very beginning, the super worldline is

extended by SU(2)/U(1) harmonics. After eliminating auxiliary fields in the component

action, we obtain harmonic-like fields also in the target space. The action for these fields is

only of first order in time derivatives, hence get quantized to pure spin (or “isospin”) degrees

of freedom. Thus, starting from a theory with worldline harmonic variables, we arrive at

a sort of harmonic target superspace. The corresponding wave functions are irreducible

SU(2) multispinors, in contradistinction to ordinary conformal or superconformal quantum

mechanics [1, 10–13] where spin is solely due to the fermionic fields and disappears in the

bosonic limit. Here instead, the bosonic quantum sector may be interpreted as a direct

product of standard quantum conformal mechanics [1] with a fuzzy sphere [30], which

appears by virtue of the S2 Wess-Zumino term.

2 Superfield setup

A natural arena for N=4, d=1 supersymmetric theories is the N=4, d=1 superspace [12]

(t, θi, θ̄
i) , θ̄i = (θi) , (i = 1, 2) . (2.1)

The corresponding spinor covariant derivatives have the form

Di =
∂

∂θi
+ iθ̄i∂t , D̄i =

∂

∂θ̄i
+ iθi∂t = −(Di) .

The full R-symmetry (automorphism) group of (2.1) is SO(4)R . One of the two SU(2)

factors of the latter acts on the doublet indices i and will be denoted SU(2)R . The sec-

ond SU(2) mixes θi with their complex conjugates and is not manifest in the considered

approach.

Off-shell N=4, d=1 supermultiplets admit a concise formulation in the harmonic su-

perspace (HSS) [16], an extension of (2.1) by the harmonic coordinates u±i :

(t, θ±, θ̄±, u±i ) , θ± = θiu±i , θ̄± = θ̄iu±i , u+iu−i = 1 . (2.2)

The commuting SU(2) spinors u±i parametrize the 2-sphere S2 ∼ SU(2)R/U(1)R. The

salient property of HSS is the presence of an important subspace in it, the harmonic analytic

superspace (ASS) with half of Grassmann co-ordinates as compared to (2.1) or (2.2):

(ζ, u) = (tA, θ
+, θ̄+, u±i ) , tA = t− i(θ+θ̄− + θ−θ̄+) . (2.3)

It is closed under the N=4 supersymmetry transformations. Most of the off-shell N=4, d=1

multiplets are represented by the analytic superfields, i.e. those “living” on (2.3).

Spinor covariant derivatives in the analytic basis of HSS, viz. (ζ, u, θ−, θ̄−), take

the form

D+ =
∂

∂θ−
, D̄+ = − ∂

∂θ̄−
, D− = − ∂

∂θ+
+ 2iθ̄−∂tA , D̄− =

∂

∂θ̄+
+ 2iθ−∂tA . (2.4)

– 3 –
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In the central basis (2.2), the same derivatives are defined as the projections D± = Diu±i
and D̄± = D̄iu±i . Harmonic covariant derivatives in the analytic basis read

D±± = ∂±± − 2iθ±θ̄±∂tA + θ±
∂

∂θ∓
+ θ̄±

∂

∂θ̄∓
. (2.5)

The integration measures are defined by

µH = dudtd4θ = µ
(−2)
A (D+D̄+) , µ

(−2)
A = dudζ(−2) = dudtAdθ

+dθ̄+ = dudtA(D−D̄−) .

2.1 Action

In [28], we constructed a new N=4 supersymmetric extension of the An−1 Calogero system.

Distinguishing features of its Lagrangian are, first, the appearance of the U(2) spin general-

ization of the An−1 Calogero in its bosonic sector, second, N=4 superconformal invariance

associated with the supergroup D(2, 1;−1
2 ) ≃ OSp(4|2) (as opposed to the SU(1, 1|2) su-

perconformal symmetry of the standard N = 4 superextensions [12, 13]) and, third, a

nontrivial coupling to the center-of-mass coordinate. All these features are retained even

in the extremal n=1 case where only the center-of-mass coordinate is present. It develops

a conformal potential, so the n=1 case of the N=4 Calogero model of [28] amounts to

a non-trivial model of N=4 superconformal mechanics (as distinct from the new N=1, 2

models also obtained in [28] by the same method; in them, the n=1 case yields a free

system). Below we describe the superfield action of this model.

It involves superfields corresponding to three off-shell N=4 supermultiplets: (i) the

“radial” multiplet (1,4,3); (ii) the Wess-Zumino (“isospin”) multiplet (4,4,0); and (iii)

the gauge (“topological”) multiplet (0,0,0). The action has the form

S = SX + SFI + SWZ . (2.6)

First term in (2.6) is the standard free action of (1,4,3) multiplet

SX = −1

2

∫

µH X
2 , (2.7)

where the even real superfield X is subjected to the constraints

D++
X = 0 , (2.8)

D+D−
X = 0 , D̄+D̄−

X = 0 , (D+D̄− + D̄+D−)X = 0 . (2.9)

The set of conditions (2.8) and (2.9) is equivalent to the standard constraints DiDi X = 0,

D̄iD̄
i
X = 0, [Di, D̄i]X = 0 in the central basis (2.2).

Second term in (2.6) is Fayet-Iliopoulos (FI) term

SFI =
i

2
c

∫

µ
(−2)
A V ++ (2.10)

for the gauge supermultiplet. The even analytic gauge superfield V ++(ζ, u), D+ V ++ = 0,

D̄+ V ++ = 0 , is subjected to the gauge transformations

V ++′ = V ++ −D++λ, λ = λ(ζ, u) , (2.11)

– 4 –
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which are capable to gauge away, locally, all the components from V ++. However, the

latter contains a component which cannot be gauged away globally. This is the reason why

this d = 1 supermultiplet was called “topological” in [31].

Last term in (2.6) is Wess-Zumino (WZ) term

SWZ =
1

2

∫

µ
(−2)
A V Z̄+ Z+ . (2.12)

Here, the complex analytic superfield Z+, Z̄+ (D+Z+ = D̄+Z+ = 0) , is subjected to the

harmonic constraints

D
++ Z+ ≡ (D++ + i V ++)Z+ = 0 , D

++ Z̄+ ≡ (D++ − i V ++) Z̄+ = 0 (2.13)

and describes a gauge-covariantized version of the N=4 multiplet (4,4,0). The relevant

gauge transformations are

Z+′ = eiλZ+, Z̄+′ = e−iλZ̄+ . (2.14)

The superfield V(ζ, u) in (2.12) is a real analytic gauge superfield (D+ V = D̄+ V = 0),

which is a prepotential solving the constraints (2.8) for X. It is related to the superfield X

in the central basis by the harmonic integral transform [32]

X(t, θi, θ̄
i) =

∫

duV
(

tA, θ
+, θ̄+, u±

)

∣

∣

∣

θ±=θiu±

i
, θ̄±=θ̄iu±

i

. (2.15)

The unconstrained analytic prepotential V has its own pregauge freedom

δV = D++λ−− , λ−− = λ−−(ζ, u) , (2.16)

which can be exploited to show that V describes just the multiplet (1,4,3) (after choosing

the appropriate Wess-Zumino gauge) [32]. The coupling to the multiplet (1,4,3) in (2.12)

is introduced for ensuring superconformal invariance. As we shall see, upon passing to

components, it gives rise to non-trivial interactions for the physical fields. The invariance

of (2.12) under (2.16) is ensured by the constraints (2.13).

2.2 Superconformal invariance

Besides the gauge U(1) symmetry (2.11), (2.14) and pregauge symmetry (2.16), the ac-

tion (2.6) is invariant under the rigid N=4 superconformal symmetry D(2, 1;α) with

α = −1/2. All superconformal transformations are contained in the closure of the su-

pertranslations and superconformal boosts.

Invariance of the action (2.6) under the supertranslations (ε̄i = (εi))

δt = i(θkε̄
k − εkθ̄

k), δθk = εk, δθ̄k = ε̄k

is automatic because we use the N=4 superfield approach.

– 5 –
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The coordinate realization of the superconformal boosts of D(2, 1;α) [17, 31] special-

ized to the case of α = −1/2 is as follows (η̄i = (ηi)):

δ′t=−Λ0t , δ′θi = ηit− Λ0θi , δ′θ̄i = η̄it− Λ0θ̄
i , (2.17)

δ′tA =−2ΛtA , δ′θ+= η+tA+iη−θ+θ̄+, δ′θ̄+= η̄+tA+iη̄−θ+θ̄+, δ′u+
i = Λ++u−i ,

(2.18)

δ′(dtd4θ) = 2(dtd4θ)Λ0 , δ′µH = µH (2Λ+Λ0) , δ′µ
(−2)
A = 0 , δ′D++= −Λ++D0, (2.19)

where

Λ = Λ̃ = i(η−θ̄+ − η̄−θ+) , Λ++ = D++Λ = i(η+θ̄+ − η̄+θ+) , D++Λ++ = 0 , (2.20)

Λ0 = 2Λ −D−−Λ++ = i(ηk θ̄
k + η̄kθk) , D++Λ0 = 0 . (2.21)

Taking the field transformations in the form (here we use the “passive” interpretation

of them)

δ′X = −Λ0 X , δ′V = −2ΛV , δ′Z+ = ΛZ+ , δ′V ++ = 0 , (2.22)

it is easy to check the invariance of the action (2.6). Note that the constraints (2.8), (2.9)

and (2.13) as well as the actions (2.10) and (2.12), are invariant with respect to the

D(2, 1;α) transformations with an arbitrary α. It is important, that the action (2.12)

is superconformally invariant just due to the presence of the analytic prepotential V . The

free action (2.7) is invariant only under the supergroup D(2, 1;α = −1/2) ∼ OSp(4|2)
which is thus the superconformal symmetry of the full action (2.6).

2.3 Supersymmetric gauge

In the next sections we will analyse the component structure of the model by choosing the

Wess-Zumino (WZ) gauge for the superfield V ++. However, in order to clarify the off-shell

superfield content of our model, it is instructive to fix the underlying U(1) gauge freedom

by choosing a gauge which preserve manifest N=4 supersymmetry. A gauge suitable for

our purpose was used in [31].

To make contact with the consideration in [31], let us combine the superfields Z+ and

Z̄+ into a doublet of some extra (“Pauli-Gürsey”) SU(2)PG group as

q+a := (Z̄+,Z+) , a = 1, 2 (2.23)

and rewrite the transformation law (2.14) and the constraints (2.13) as

δq+a = λcabq
+b , D++q+a + V ++cabq

+b = 0 . (2.24)

Here, the traceless constant tensor cab breaks SU(2)PG down to U(1) which is just the

symmetry to be gauged. Choosing the frame where the only non-zero entries of cab are

c11 = −c22 = −i, we recover the transformation law (2.14) and the constraints (2.13). It is

easy to see that

Z̄+Z+ = − i

2
q+a cab q

+b . (2.25)

– 6 –
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In [31] (following [29]) an invertible equivalence redefinition of q+a ⇒ (ω, l++) has been

exploited, such that the U(1) gauge transformation in (2.24) is realized as

δω = −2λ , δl++ = 0 (2.26)

(the precise form of this equivalence transformation is given in eq. (4.26) in [31]; it is a

superfield analog of the standard polar decomposition of a vector). Then one can fully fix

the U(1) gauge freedom by imposing the manifestly N=4 supersymmetric gauge

ω = 0 . (2.27)

In this gauge, the harmonic constraint in (2.24) implies

(a) q+a cab q
+b = 4(c++ + l++) , (b) V ++ =

l++

(1 +
√

1 + c−−l++)
√

1 + c−−l++
,

(c) D++(c++ + l++) = D++l++ = 0 , (2.28)

where c±± = c(ab)u±a u
±
b . After substituting the expressions (2.28a) and (2.28b) into (2.12)

and (2.10), the total superfield action (2.6) takes the form:

S = −1

2

∫

µH X
2 − i

∫

µ
(−2)
A

[

V (c++ + l++) − c

2

l++

(1 +
√

1 + c−−l++)
√

1 + c−−l++

]

.

(2.29)

The superfield l++ with the constraint (2.28c) accommodates an off-shell N=4 mul-

tiplet (3,4,1) [17]. So, the action (2.29) describes a system of two interacting off-shell

N=4, d=1 multiplets: (1,4,3) represented by the superfield X and (3,4,1) represented by

the analytic superfield l++. This is the off-shell content of our OSp(4|2) model. As distinct

from the superconformal mechanics based on a single (3,4,1) multiplet the action of which

is a sum of the sigma-model type term and WZ term of l++ [16, 17], the action (2.29) in-

volves only conformal superfield WZ term of this multiplet (the last term in the square

brackets). The interaction with the multiplet (1,4,3) is accomplished through a supercon-

formal bilinear coupling of both multiplets (the first term in the square brackets).1 Notice

that, due to the absence of the kinetic term for l++ in (2.29), the on-shell content of the

model appears to be drastically different from the off-shell one: the eventual component

action contains only three bosonic fields and four fermionic fields, which are joined into

some new on-shell (3,4,1) multiplet (see the next section).

3 Component actions

3.1 Action for (1,4,3) supermultiplet

The solution of the constraint (2.8), (2.9) is as follows (in the analytic basis):

X = x+ θ−ψ+ + θ̄−ψ̄+ − θ+ψ− − θ̄+ψ̄− + θ−θ̄−N++ + θ+θ̄+N−− + (θ−θ̄+ + θ+θ̄−)N

+ θ−θ+θ̄−Ω+ + θ̄−θ̄+θ−Ω̄+ + θ−θ̄−θ+θ̄+D , (3.1)

1The existence of such a coupling and its potential implications in the models of superconformal N=4

mechanics were noted for the first time in [32].

– 7 –
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where

N±± = N iku±i u
±
k , N = iẋ−N iku+

i u
−
k , D = 2ẍ+ 2iṄ iku+

i u
−
k , (3.2)

ψ± = ψiu±i , ψ̄± = ψ̄iu±i , Ω+ = 2iψ̇+ , Ω̄+ = −2i ˙̄ψ+ (3.3)

and x(tA), N ik = N (ik)(tA), ψi(tA), ψ̄i(tA) = (ψi) are d=1 fields.

Inserting (3.1) in (2.7) and integrating there over the θ- and harmonic variables,2

we obtain

SX =

∫

dt

[

ẋẋ− i
(

ψ̄kψ̇
k − ˙̄ψkψ

k
)

− 1

2
N ikNik

]

. (3.4)

In the central basis the θ expansion (3.1) takes the form:

X(t, θi, θ̄
i) = x+ θiψ

i + ψ̄iθ̄
i + θiθ̄kNik +

i

2
(θ)2ψ̇iθ̄

i +
i

2
(θ̄)2θi

˙̄ψi +
1

4
(θ)2(θ̄)2ẍ (3.5)

where (θ)2 ≡ θiθ
i = −2θ+θ−, (θ̄)2 ≡ θ̄iθ̄i = 2θ̄+θ̄− . Then, from (2.15) we can identify the

fields appearing in the WZ gauge for V with the fields in (3.5)

V(tA, θ
+, θ̄+, u±) = x(tA) − 2 θ+ψi(tA)u−i − 2 θ̄+ψ̄i(tA)u−i + 3 θ+θ̄+N ik(tA)u−i u

−
k . (3.6)

This expansion will be used to express the action (2.12) in terms of the component fields.

3.2 FI and WZ actions

Using the U(1) gauge freedom (2.11), (2.14) we can choose WZ gauge

V ++ = −2i θ+θ̄+A(tA) . (3.7)

Then

SFI = c

∫

dtA . (3.8)

The solution of the constraint (2.13) in WZ gauge (3.7) is

Z+ = ziu+
i +θ+ϕ+θ̄+φ+2i θ+θ̄+∇tAz

iu−i , Z̄+ = z̄iu
+i+θ+φ̄−θ̄+ϕ̄+2i θ+θ̄+∇tA z̄iu

−i

(3.9)

where

∇zk = żk + iA zk , ∇z̄k = ˙̄zk − iA z̄k . (3.10)

In (3.9), zi(tA) and ϕ(tA), φ(tA) are d=1 fields, bosonic and fermionic, respectively. The

fields zi form a complex doublet of the R-symmetry SU(2) group, while the fermionic

fields are singlets of the latter. Another (“mirror”) R-symmetry SU(2) is not manifest in

the present approach: the bosonic fields are its singlets, while the fermionic fields form a

doublet with respect to it.

2Here the harmonics integrals
R

du u+iu−

k
= 1

2
δi

k,
R

duu+(i1u+i2)u−

(k1
u−

k2) = −2
R

duu+(i1u−i2)u+
(k1

u−

k2)

= 1
3

δ
(i1
(k1

δ
i2)

k2)
are used.
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Inserting expressions (3.9) and (3.6) in the action (2.12) and integrating over θ s and

harmonics, we obtain a component form of the WZ action

SWZ =
i

2

∫

dt
(

z̄k∇zk −∇z̄k zk
)

x− 1

2

∫

dtN ikz̄izk (3.11)

+
1

2

∫

dt
[

ψk (ϕ̄ zk + z̄kφ) + ψ̄k
(

φ̄ zk − z̄kϕ
)

− x
(

φ̄ φ+ ϕ̄ ϕ
)

]

.

The fermionic fields φ,ϕ are auxiliary. The action is invariant under the residual local

U(1) transformations

A′ = A− λ̇0 , zi′ = eiλ0zi , z̄i
′ = e−iλ0 z̄i (3.12)

(and similar phase transformations of the fermionic fields).

The total component action is a sum of (3.4), (3.8) and (3.11). Eliminating the auxil-

iary fields N ik, φ, φ̄, ϕ, ϕ̄, from this sum by their algebraic equations of motion,

Nik = −1

2
z(iz̄k) , (3.13)

φ = − ψ̄
kzk
x

, φ̄ =
ψkz̄k
x

, ϕ = −ψ
kzk
x

, ϕ̄ = − ψ̄
kz̄k
x

, (3.14)

and making the redefinition

z′i = x1/2 zi , (3.15)

we obtain that the action (2.6) in WZ gauge takes the following on-shell form (we omitted

the primes on z)

S = Sb + Sf , (3.16)

Sb =

∫

dt
[

ẋẋ+
i

2

(

z̄kż
k − ˙̄zkz

k
)

− (z̄kz
k)2

16x2
−A

(

z̄kz
k − c

) ]

, (3.17)

Sf = −i
∫

dt
(

ψ̄kψ̇
k − ˙̄ψkψ

k
)

−
∫

dt
ψiψ̄kz(iz̄k)

x2
. (3.18)

It is still invariant under the gauge transformations (3.12). The d=1 connection A(t)

in (3.17) is the Lagrange multiplier for the constraint

z̄kz
k = c . (3.19)

After varying with respect to A, the action (3.16) is gauge invariant only with taking into

account this algebraic constraint which is gauge invariant by itself. It is convenient to fully

fix the residual gauge freedom by choosing the phases of z1 and z2 opposite to each other.

In this gauge, the constraint (3.19) is solved by

z1 = κ cos
γ

2
eiα/2 , z2 = κ sin

γ

2
e−iα/2 , κ2 = c . (3.20)
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In terms of the newly introduced fields the action (3.16) takes the form

S = Sb + Sf , (3.21)

Sb =

∫

dt
[

ẋẋ− c2

16x2
− c

2
cos γ α̇

]

, (3.22)

Sf = −i
∫

dt
(

ψ̄kψ̇
k − ˙̄ψkψ

k
)

+
c

2

∫

dt
cos γ

(

ψ1ψ̄1 + ψ2ψ̄2

)

− sin γ
(

eiαψ2ψ̄1 + e−iαψ1ψ̄2

)

x2
. (3.23)

Unconstrained fields in the action (3.21), three bosons x, γ, α and four fermions ψk,

ψ̄k, constitute some on-shell (3,4,1) supermultiplet. As opposed to the (3,4,1) supermul-

tiplet considered in [12, 16, 18] the action (3.22) contains “true” kinetic term only for one

bosonic component which also possesses the conformal potential, whereas two other fields

parametrizing the coset SU(2)R/U(1)R are described by a WZ term and so become a sort of

ispospin degrees of freedom (target SU(2) harmonics) upon quantization. The realization of

OSp(4|2) superconformal transformations on these fields will be given in the next section.

It should be stressed that the considered model realizes a new mechanism of generating

conformal potential ∼ 1/x2 for the field x(t). Before eliminating auxiliary fields, the

component action contains no explicit term of this kind. It arises as a result of varying

with respect to the Lagrange multiplier A(t) and making use of the arising constraint (3.19).

As we shall see soon, in quantum theory this new mechanism entails a quantization of the

constant c . In the SU(1, 1|2) superconformal quantum mechanics, the strength of the

conformal potential appears in the su(1, 1|2) algebra as a constant central charge [12, 14,

19]. In our model such an option does not exist since the superalgebra osp(4|2) does not

alow a central extension.

Notice that an equivalent component action can be obtained starting from the super-

field action (2.29) which corresponds to another choice of the gauge with respect to U(1)

transformations. As distinct from the WZ gauge used in this section, the gauge correspond-

ing to (2.29) preserves the manifest N=4 supersymmetry and does not exhibit any residual

gauge freedom. The component bosonic sector of (2.29) involves one physical x = X|θ=0

and three bosonic fields y(ik) from the (3,4,1) superfield l++. They form a 3-vector with

respect to SU(2)R (l++ + c++ = y(ik)u+
i u

+ + θ-dependent terms). By an algebraic con-

straint, with the auxiliary field of (3,4,1) as a Lagrange multiplier, the fields y(ik) are

confined to parametrize a sphere S2. This constraint plays a role analogous to (3.19). The

gauge-invariant fields y(ik) are related to the doublet fields zi, z̄k via the well-known first

Hopf map (see also section below). The relation (2.28a) is in fact a superfield version of

this map. Thus, one again ends up with 3 bosonic fields and 4 fermionic fields forming an

irreducible on-shell multiplet.

It is also worth noting that this reduction of two independent off-shell N=4 multiplets

(3,4,1) and (1,4,3) to a smaller on-shell N=4 multiplet somewhat resembles the procedure

of ref. [33] in which some irreducible N=4 multiplets with four physical fermions are gen-

erated from pairs of other multiplets of this type by identifying fermionic fields in the mul-

tiplets forming the pair. In our case such identification arises as one of the algebraic equa-
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tions of motion, eq. (3.14). In this connection, it would be interesting to inquire whether

the component action (3.21) can be independently re-derived from an alternative (dual)

superfield action corresponding to some nonlinear version of the off-shell multiplet (3,4,1).

3.3 N=4 superconformal symmetry in WZ gauge

The transformations and their generators look most transparent in terms of the SU(2)

doublet quantities zk and z̄k.

To determine the superconformal transformations of component fields, we should

know the appropriate compensating gauge transformations needed to preserve the WZ

gauge (3.7). For supertranslations and superconformal boosts the parameter of the com-

pensating gauge transformations is as follows

λ = 2i
[

(θ+ε̄− − θ̄+ε−) + tA (θ+η̄− − θ̄+η−)
]

A (3.24)

where

ε− := εiu−i , η− := ηiu−i . (3.25)

Taking this into account, we obtain the relevant infinitesimal OSp(4|2) transformations:

δx = −ωiψ
i + ω̄iψ̄i , (3.26)

δψi =
ω̄kz

(iz̄k)

2x
− iω̄iẋ+ iη̄ix , (3.27)

δzi =
ω(iψk) + ω̄(iψ̄k)

x
zk , (3.28)

δA = 0 , (3.29)

where ωi = εi + t ηi .

Now, using the Nöther procedure, we can directly find the classical generators of

the supertranslations

Qi = pψi − i
z(iz̄k)ψk

x
, Q̄i = p ψ̄i + i

z(iz̄k)ψ̄
k

x
(3.30)

where p ≡ 2ẋ, as well as of the superconformal boosts:

Si = −2xψi + tQi, S̄i = −2xψ̄i + t Q̄i . (3.31)

The remaining (even) generators of the supergroup OSp(4|2) can be found by evaluating

anticommutators of the above odd generators among themselves.

As follows from the action (3.16), the SU(2) spinor variables are canonically self-

conjugate due to the presence of second-class constraints for their momenta. As a result,

non-vanishing canonical Dirac brackets (at equal times) have the following form

[x, p]
D

= 1, [zi, z̄j ]D = −iδi
j , {ψii′ , ψkk′}

D
=
i

2
ǫikǫi

′k′

(3.32)

where we introduced the notations

ψii′ = (ψi1′ , ψi2′) = (ψi, ψ̄i), (ψii′) = ψii′ = ǫikǫi′k′ψkk′

, (ǫ12 = ǫ21 = 1). (3.33)
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Using Dirac brackets (3.32), we arrive at the following closed superalgebra:

{Qai′i, Qbk′k}
D

= 2i
(

ǫikǫi
′k′

T ab + αǫabǫi
′k′

J ik − (1 + α)ǫabǫikIi′k′
)

, (3.34)
[

T ab, T cd
]

D

= −ǫacT bd − ǫbdT ac, [J ij , Jkl]
D

= −ǫikJjl − ǫjlJ ik,
[

Ii′j′ , Ik′l′
]

D

= −ǫikIj′l′ − ǫj
′l′Ii′k′

, (3.35)
[

T ab, Qci′i
]

D

= ǫc(aQb)i′i, [J ij , Qai′k]
D

= ǫk(iQai′j), [J i′j′ , Qak′i]
D

= ǫk
′(i′Qaj′)i (3.36)

where α = −1
2 . In (3.34)–(3.36) we use the notation

Q21′i = −Qi , Q22′i = −Q̄i , Q11′i = Si , Q12′i = S̄i , (3.37)

T 22 = H , T 11 = K , T 12 = −D . (3.38)

The explicit expressions for the generators are

H =
1

4
p2 +

(z̄kz
k)2

16x2
+
ziz̄j ψi

k′

ψjk′

2x2
, (3.39)

K = x2 − t xp+ t2H , (3.40)

D = −1

2
xp+ tH , (3.41)

J ij = i
[

z(iz̄j) + ψik′

ψj
k′

]

, (3.42)

Ii′j′ = iψki′ψk
j′ . (3.43)

The relations (3.34)–(3.36) provide the standard form of the superalgebra D(2, 1;−1
2 ) ≃

OSp(4|2) (see, e.g., [16, 24, 27]). Bosonic generators T ab = T ba, J ik = Jki, Ii′k′

= Ik′i′

form mutually commuting su(1, 1), su(2) and su ′(2) algebras, respectively.

The expression (3.39) is precisely the canonical Hamiltonian obtained from the ac-

tion (3.16). Owing to the A-term in (3.16), there is also the first-class constraint

D0 ≡ z̄kz
k − c ≈ 0 , (3.44)

which should be imposed on wave functions in quantum case.

In the next section we shall construct a quantum realization ofD(2, 1;−1
2 ) superalgebra

given above.

4 OSp(4|2) quantum mechanics

4.1 Bosonic limit and fuzzy sphere

In order to understand the specific features of our model better, we begin by quantizing it in

the bosonic limit, with all fermionic fields discarded. It reveals an interesting deviation from

the standard conformal quantum mechanics of deAlfaro, Fubini and Furlan [1]: besides

the standard dilatonic variable x(t) with the conformal potential, it also contains a fuzzy

sphere [30, 34, 35] represented by the SU(2) spinor variables zi(t), z̄i(t). As a result, the
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relevant wave functions are non-trivial SU(2) multiplets, as opposed to the singlet wave

function of the standard conformal mechanics. The strength of the conformal potential

proves to coincide with the eigenvalue of the SU(2) Casimir operator (i.e. “spin”) and so

is quantized.

The pure bosonic model is described by the action (3.17). The corresponding canonical

Hamiltonian reads

H0 =
1

4

[

p2 +
(z̄kz

k)2

4x2

]

+A
(

z̄kz
k − c

)

. (4.1)

Here p = 2ẋ is the canonical momentum for the coordinate x. Canonical momentum for

the field A is vanishing, pA = 0. This constraint and the fact that the field A appears in

the action (3.17) linearly, suggest to treat A as the Lagrange multiplier for the constraint

D0 − c ≡ z̄kz
k − c ≈ 0 . (4.2)

Expressions for the canonical momenta pi and p̄i for the z-variables, [zi, pj]P =δi
j, [z̄i, p

j ]
P

=

δj
i , are the second-class constraints

Gk ≡ pk −
i

2
z̄k ≈ 0 , Ḡk ≡ p̄k +

i

2
zk ≈ 0 , [Gk, Ḡ

l]
P

= −iδl
k. (4.3)

Using Dirac brackets for them

[A,B]
D

= [A,B]
P

+ i[A,Gk ]
P
[Ḡk, B]

P
− i[A, Ḡk]

P
[Gk, B]

P

we eliminate the spinor momenta pi and p̄i. Dirac brackets for the residual variables are

[x, p]
D

= 1, [zi, z̄j ]D = −iδi
j . (4.4)

To finish with the classical description, we point out that the spinor variables describe

a two-sphere. Namely, using the first Hopf map we introduce three U(1) gauge invari-

ant variables

ya =
1

2
z̄i(σa)

i
jz

j (4.5)

where σa, a = 1, 2, 3 are Pauli matrices. The constraint (4.2) suggests that these variables

parameterize a two-sphere with the radius c/2:

yaya = (zkz̄k)
2/4 ≈ c2/4 . (4.6)

The group of motion of this 2-sphere is of course the R-symmetry SU(2) group acting

on the doublet indices i, k and triplet indices a. In terms of the new variables (4.5) the

Hamiltonian (4.1), up to terms vanishing on the constraints, takes the form

H =
1

4

[

p2 +
yaya

x2

]

. (4.7)

It is worth pointing out that (4.5) is none other than the WZ gauge counterpart of the

superfield Hopf map (2.28a).
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At the quantum level, the algebra of the canonical operators obtained from the algebra

of Dirac brackets is (quantum operators are denoted by the appropriate capital letters),

[X,P ] = i , [Zi, Z̄j ] = δi
j . (4.8)

Then it is easy to check that the quantum counterparts of the variables (4.5)

Ya =
1

2
Z̄i(σa)

i
jZ

j (4.9)

form the SU(2) algebra

[Ya, Yb] = i ǫabcYc . (4.10)

Notice that no ordering ambiguity is present in the definition (4.9).

Moreover, the direct calculation yields

YaYa =
1

2
Z̄kZ

k

(

1

2
Z̄kZ

k + 1

)

(4.11)

and, due to the constraints (for definiteness, we adopt Z̄kZ
k-ordering in it), one gets

YaYa =
c

2

( c

2
+ 1

)

. (4.12)

But the relations (4.10) and (4.12) are the definition of the fuzzy sphere coordinates [30].

Thus the angular variables, described, at the classical level, by spinor variables zi or vector

variables ya, after quantization acquire a nice interpretation of the fuzzy sphere coordinates.

Comparing the expressions (4.11) and (4.12), we observe that upon quantization the radius

of the sphere changes as c2

4 → c
2

(

c
2 + 1

)

.

As suggested by the relation (4.10), the fuzzy sphere coordinates Ya are the generators

of su(2)R algebra and the relation (4.12) fixes the value of its Casimir operator, with c

being the relevant SU(2) spin (“fuzzyness”). Then it follows that c is quantized, c ∈ Z.

Actually, from the standpoint of the supergroup OSp(4|2), this su(2) algebra is just a

quantum version of the su(2) generated by generators J ik defined in (3.42).

The wave functions inherit this internal symmetry through a dependence on additional

SU(2) spinor degrees of freedom. Let us consider the following realization for the operators

Zi and Z̄i

Z̄i = v+
i , Zi = ∂/∂v+

i (4.13)

where v+
i is a commuting complex SU(2) spinor. Then the constraint (4.2) on wave func-

tion Φ(x, v+
i )

D0Φ = Z̄iZ
iΦ = v+

i

∂

∂v+
i

Φ = cΦ (4.14)

leads to the polynomial dependence of it on v+
i :

Φ(x, v+
i ) = φk1...kc

(x)v+k1 . . . v+kc . (4.15)

Thus, as opposed to the model of ref. [1], in our case the x-dependent wave function

carries an irreducible spin c/2 representation of the group SU(2), being an SU(2) spinor of

the rank c.
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Using (4.7) and (4.12) we see that on physical states the quantum Hamiltonian is

H =
1

4

(

P 2 +
g

X2

)

, (4.16)

where

g =
c

2

( c

2
+ 1

)

. (4.17)

It is easy to show that the SU(1,1) Casimir operator takes the value 1
4 g − 3

16 (for further

details, see the next sections). Thus, like in [1], on the fields φk1...kc
(x) the unitary irre-

ducible representations of the group SU(1,1) are realized, despite the fact that the wave

function is now multi-component, with (c + 1) independent components. Requiring the

wave function Φ(v+) to be single-valued once again leads to the condition that c ∈ Z. This

quantization of parameter c could be important for the possible black hole interpretation

of the considered variant of conformal mechanics.

Note that the new variables v+
i can be treated as a half of the target space harmonic-like

variables v+
i , v

−
i (though without the familiar constraint v+iv−i ∼ const). The harmonic

interpretation could be made more literal using a different, mixed Dirac- Gupta-Bleuler

quantization for z variables along the line of ref. [36].

4.2 Operator realization of OSp(4|2) superalgebra

Here we extend the bosonic-limit consideration to the whole OSp(4|2) mechanics.

Quantum operators of physical coordinates and momenta satisfy the quantum brackets,

obtained in the standard way from (3.32) (by multiplying the latter by i):

[X,P ] = i , [Zi, Z̄j ] = δi
j , {Ψi, Ψ̄j} = −1

2
δi
j . (4.18)

Quantum supertranslation and superconforml boost generators are uniquely defined

by the classical expressions (3.30), (3.31). They appear to be linear in the odd operators:

Qi = PΨi − i
Z(iZ̄k)Ψk

X
, Q̄i = P Ψ̄i + i

Z(iZ̄k)Ψ̄
k

X
, (4.19)

Si = −2XΨi + tQi, S̄i = −2XΨ̄i + t Q̄i . (4.20)

Evaluating the anticommutators of the odd generators (4.19), (4.20), one determines

uniquely the full set of quantum generators of superconformal algebra D(2, 1;−1
2 ).

We obtain

H =
1

4
P 2 +

(Z̄kZ
k)2 + 2Z̄kZ

k

16X2
+
Z(iZ̄k)Ψ(iΨ̄k)

X2
, (4.21)

K = X2 − t
1

2
{X,P} + t2 H , (4.22)

D = −1

4
{X,P} + tH , (4.23)

Jik = i
[

Z(iZ̄k) + 2Ψ(iΨ̄k)
]

, (4.24)

I1′1′ = −iΨkΨ
k , I2′2′ = iΨ̄kΨ̄k , I1′2′ = − i

2
[Ψk, Ψ̄

k] . (4.25)
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It can be directly checked that the generators (4.19)–(4.25) indeed form the D(2, 1;−1
2 )

superalgebra which is obtained form the DB superalgebra (3.34)–(3.36) by changing alto-

gether DB by (anti)commutators and multiplying the right-hand sides by i.

The second-order Casimir operator ofD(2,1;−1
2) is given by the following expression [37]

C2 = T2 − 1

2
(J2 + I2) +

i

4
Qai′iQai′i (4.26)

(the quantum SU(1, 1) generators Tab are defined in terms of the generators (4.21)–(4.23)

by the same formulas (3.38)). Using the relations

T2 ≡ 1

2
TabTab =

1

16

[

(Z̄kZ
k)2 + 2Z̄kZ

k
]

+ Z(iZ̄k)Ψ(iΨ̄k) −
3

16
, (4.27)

J2 ≡ 1

2
JikJik =

1

4

[

(Z̄kZ
k)2 + 2Z̄kZ

k
]

− 3

2

(

ΨiΨ
i Ψ̄kΨ̄k − ΨiΨ̄

i
)

− 2Z(iZ̄k)Ψ(iΨ̄k), (4.28)

I2 ≡ 1

2
Ii′k′

Ii′k′ =
1

2
{Ī, I} − (I3)

2 =
3

2

(

ΨiΨ
i Ψ̄kΨ̄k − ΨiΨ̄

i
)

+
3

4
(4.29)

together with

i

4
Qai′iQai′i =

i

4
[Qi, S̄i] +

i

4
[Q̄i,S

i] = −2Z(iZ̄k)Ψ(iΨ̄k) +
1

2
, (4.30)

we find that C2 takes the form

C2 = − 1

16

[

(Z̄kZ
k)2 + 2Z̄kZ

k + 1
]

. (4.31)

Using (4.31), we can rewrite quantum Hamiltonian (4.21) in the following equivalent sug-

gesting form:

H =
1

4
P 2 − C2

X2
− 1

16X2
+
Z(iZ̄k)Ψ(iΨ̄k)

X2
. (4.32)

An important observation is that the following quantities belonging to the enveloping

algebra of osp(4|2) superalgebra

M ≡ 4T2 − (J2 + I2) +
3i

4
Qai′iQai′i , (4.33)

Mik, i′k′ ≡ {Jik, Ii′k′} + iQb(i′(iQb
k′)k) , (4.34)

Mai′i ≡ i

2
{Ta

b ,Q
bi′i} +

i

4
{Ji

j ,Q
ai′j} +

i

4
{Ii′

j′ ,Q
aj′i} (4.35)

form a linear finite-dimensional representation of OSp(4|2):

[M,Qai′i] = Mai′i , [Mik, i′k′

,Qbj′j] = −4ǫj(iǫj
′(i′Mak′)k) ,

[

Mai′i,Qbk′k
]

= − i

2
ǫabǫi

′k′

ǫikM− i

2
ǫabMik, i′k′

.

For the particular representation of generators given by eqs. (4.27)–(4.29) all quanti-

ties (4.33)–(4.35) identically vanish:

M = 0 , Mik, i′k′

= 0 , Mai′i = 0 . (4.36)
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As a consequence of these identities, there arises the relation

T2 +
1

2
(J2 + I2) = −3C2 . (4.37)

Thus, for an irreducible representation of D(2, 1;−1
2 ) with a fixed C2 (see (4.47) below)

the values of the Casimir operators T2, J2, I2 of three bosonic subgroups sl(2,R), su(2),

su′(2) prove to be related as in (4.37).

4.3 Quantum spectrum

The Hamiltonian (4.21) and the sl(2,R) Casimir operator (4.27) can be represented as

H =
1

4

(

P 2 +
ĝ

X2

)

, (4.38)

T2 =
1

4
ĝ − 3

16
, (4.39)

where

ĝ ≡ 1

2
Z̄kZ

k

(

1

2
Z̄kZ

k + 1

)

+ 4Z(iZ̄k)Ψ(iΨ̄k) . (4.40)

The operators (4.38) and (4.39) formally look like those given in the SU(1, 1) model of

[1]. However, there is an essential difference. Whereas the quantity ĝ is a constant in the

SU(1, 1) model, in our case ĝ is an operator taking fixed, but different, constant values on

different components of the full wave function.

To find the quantum spectrum of (4.38) and (4.39), we make use of the realization (4.13)

for the bosonic operators Zk and Z̄k, as well as the following realization of the odd opera-

tors Ψi, Ψ̄i

Ψi = ψi, Ψ̄i = −1

2
∂/∂ψi , (4.41)

where ψi are complex Grassmann variables. Then, the state vector (wave function) is

defined as

Φ = A1 + ψiBi + ψiψiA2 . (4.42)

The full wave function is subjected to the same constraints (3.44) as in the bosonic

limit (we use the normal ordering for even SU(2)–spinor operators, with all operators Zi

standing on the right)

D0Φ = Z̄iZ
iΦ = v+

i

∂

∂v+
i

Φ = cΦ. (4.43)

Like in the bosonic limit, requiring the wave function Φ(v+) to be single-valued gives rise to

the condition that the constant c must be integer, c ∈ Z. We take c to be positive in order

to have a correspondence with the bosonic limit where c becomes SU(2) spin. Then (4.43)

implies that the wave function Φ(v+) is a homogeneous polynomial in v+
i of the degree c:

Φ = A
(c)
1 + ψiB

(c)
i + ψiψiA

(c)
2 , (4.44)

A
(c)
i′ = Ai′,k1...kc

v+k1 . . . v+kc , (4.45)

B
(c)
i = B

′(c)
i +B

′′(c)
i = v+

i B
′
k1...kc−1

v+k1 . . . v+kc−1 +B′′
(ik1...kc)

v+k1 . . . v+kc . (4.46)

In (4.46) we extracted SU(2) irreducible parts B′
(k1...kc−1)

and B′′
(ik1...kc)

of the component

wave functions, with the SU(2) spins (c− 1)/2 and (c+ 1)/2, respectively.
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r0 j i

A
(c)
k′ (x, v+) c+3

4
c
2

1
2

B
′(c)
k (x, v+) c+3

4 + 1
2

c
2 − 1

2 0

B
′′(c)
k (x, v+) c+3

4 − 1
2

c
2 + 1

2 0

Table 1. The SU(1, 1), SU(2) and SU′(2) quantum numbers.

On the physical states (4.43), (4.44) Casimir operator (4.31) takes the value

C2 = −(c+ 1)2/16 . (4.47)

On the same states, the Casimir operators (4.27)–(4.29) of the bosonic subgroups

SU(1, 1), SU(2) and SU′(2) take the following values

T2 = r0(r0 − 1) , J2 = j(j + 1) , I2 = i(i+ 1)

For different component wave functions, the quantum numbers r0, j and i take the values

listed in table 1.

The fields B′
i and B′′

i form doublets of SU(2) generated by Jik , whereas the compo-

nent fields Ai′ = (A1, A2) form a doublet of SU′(2) generated by Ii′k′

. If the super-wave

function (4.42) is bosonic (fermionic), the fields Ai′ describe bosons (fermions), whereas

the fields B′
i, B

′′
i present fermions (bosons). It is easy to check that the constraint (4.37)

is satisfied in all cases.

Each of the component wave functions Ai′ , B
′
i, B

′′
i carries an infinite-dimensional uni-

tary representation of the discrete series of the universal covering group of the SU(1,1)

one-dimensional conformal group. Such representations are characterized by positive num-

bers r0 [38, 39] (for the unitary representations of SU(1,1) the constant r0 > 0 must be

(half)integer). Basis functions of these representations are eigenvectors of the compact

SU(1,1) generator

R =
1

2

(

a−1K + aH
)

,

where a is a constant of the length dimension. These eigenvalues are r = r0 + n, n ∈
N [1, 38, 39].

Using the expressions (4.21), (4.32), (4.47) we can write he Hamiltonian in the form,

common for all component wave functions,

H =
1

4

(

P 2 +
l(l + 1)

X2

)

(4.48)

where constant l takes the values given in table 2.

Let us focus on some peculiar properties of the OSp(4|2) quantum mechanics

constructed.

As opposed to the SU(1, 1|2) superconformal mechanics [12–14], the construction pre-

sented here essentially uses the variables zi (or v+
i ) parametrizing the two-sphere S2, in

addition to the standard (dilatonic) coordinate x.
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l

A
(c)
k′ (x, v+) c

2

B
′(c)
k (x, v+) c

2 + 1

B
′′(c)
k (x, v+) c

2 − 1

Table 2. Values of the constant l.

Presence of additional “spin” S2 variables in our construction leads to a richer quantum

spectrum: the relevant wave functions involve representations of the two independent SU(2)

groups, in contrast to the SU(1, 1|2) models where only one SU(2) realized on fermionic

variables matters.

Also in a contradistinction to the previously considered models, there naturally appears

a quantization of the conformal coupling constant which is expressed as a SU(2) Casimir

operator, with both integer and half-integer eigenvalues. This happens already in the

bosonic sector of the model, and is ensured by the S2 variables.

5 Summary and outlook

We have investigated N=4 superconformal mechanics with OSp(4|2) symmetry. This

model is the one-particle case (or the center-of-mass sector) of a N=4 superconformal

Calogero model recently proposed in [28]. After eliminating the auxiliary and gauge de-

grees of freedom, we obtained the OSp(4|2) generators both on the classical and on the

quantum level.

The physical sector of the model is described by one “radial” coordinate x, four

Grassmann-odd fermionic coordinates ψi and ψ̄i as well as a Grassmann-even SU(2) dou-

blet zi which parameterizes S2. The latter lack a standard kinetic term and appear only

in a Wess-Zumino term, i.e. to first order in time derivatives. These SU(2) spinor variables

lead to an unusual but rather nice property: the odd OSp(4|2) generators are linear in ψi

or ψ̄i, as opposed to SU(1, 1|2) superconformal mechanics [12–14]3 where such generators

require also terms cubic in the fermions. Note that N>4 supersymmetric mechanics with

linear supercharges is trivial as was indicated in [40].

We observed an interesting feature which might be called a “double harmonic exten-

sion”. At the classical level, the worldline parameter t is extended by harmonic variables

u±i . The above-mentioned SU(2) spinor variables zi can be interpreted as a kind of har-

monic target variables, in line with [36]. The corresponding quantum operators Zi serve

as coordinates of a fuzzy sphere.

We performed an analysis of the quantum spectrum. Its form relates to a subspace in

the enveloping algebra of osp(4|2) which is closed under the osp(4|2) action. The composite

generators from this set turn out to vanish for the specific realization of the osp(4|2)
superalgebra pertinent to our model.

3The general supergroup D(2, 1; α) was apparently implicit in [14].
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Finally, let us discuss the links of our model to the black-hole and AdS/CFT story. The

Hamiltonian (4.48) resembles the Hamiltonian for the radial motion of a massive charged

particle near the horizon of an extremal RN black hole [4] in the supersymmetry-preserving

(or BPS) limit, when the mass and electric charge of the superparticle are equal. In our

model, the quantized “angular momentum”,4 whose square is the strength of the confor-

mal potential, is given by the bosonic SU(2)-spinors and is present already in the bosonic

sector. It receives corrections from the SU(2)-spinor fermions for other components of the

wave superfunction.

Despite this formal resemblance, the superconformal symmetries differ: it is SU(1,1|2)
for the near-horizon limit of the RN black-hole solution of N=2, d=4 supergravity, while

our model is OSp(4|2) invariant. Thus, one may ask to which sort of superparticle our

superconformal mechanics does correspond. This can be explored by changing variables to

the so-called AdS basis [9, 15, 20, 41], in which the d=1 conformal group SO(1, 2) is realized

by relativistic particle motions on AdS2 ≃ SO(1, 2)/SO(1, 1). In addition, the Wess-Zumino

term in the action (3.21) describes the coupling of a charged particle on S2 to a Dirac

monopole in its center. The strength of the Wess-Zumino term is given by the product of

the electric and magnetic charges of the particle and monopole, respectively. The potential

for this magnetic flux is naturally present in the general form of the RN solution (along

with an electric potential). However, in our case the S2 variables are not propagating in

either the conformal or the AdS bases. Therefore, the hypothetical superparticle associated

with our superconformal model moves only on the AdS2 space and not on the AdS2 × S2

appearing for SU(1,1|2) mechanics. On the other hand, the presence of the Wess-Zumino

term suggests that our superparticle still couples to the magnetic charge. It would be

interesting to inquire whether a background with such properties can arise in a black-hole

type supergravity solution in higher dimensions. Since the off-shell content of our model

contains four bosonic degrees of freedom plus the worldline time for a fifth variable, we

conjecture that the appropriate supergravity should live in five spacetime dimensions.
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